Higher-dimensional integrable systems from multilinear evolution equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-Dimensional Integrable Systems from Multilinear Evolution Equations

A multilinear M -dimensional generalization of Lax pairs is introduced and its explicit form is given for the recently discovered class of time-harmonic, integrable, hypersurface motions in IR.

متن کامل

Integrable Cosmological Models From Higher Dimensional Einstein Equations

We consider the cosmological models for the higher dimensional spacetime which includes the curvatures of our space as well as the curvatures of the internal space. We find that the condition for the integrability of the cosmological equations is that the total space-time dimensions are D = 10 or D = 11 which is exactly the conditions for superstrings or M-theory. We obtain analytic solutions w...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

Integrable geometric evolution equations for curves

The vortex filament flow and planar filament flow are examples of evolution equations which commute with Euclidean isometries and are also integrable, in that they induce completely integrable PDE for curvature—the focusing nonlinear Schödinger equation and the mKdV equations, respectively. In this note we outline an approach for classifying integrable geometric evolution equations for planar c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 1996

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/29/15/003